In Vivo Expansion of Melanoma-Specific T Cells Using Microneedle Arrays Coated with Immune-Polyelectrolyte Multilayers

نویسندگان

  • Qin Zeng
  • Joshua M. Gammon
  • Lisa H. Tostanoski
  • Yu-Chieh Chiu
  • Christopher M. Jewell
چکیده

Microneedles (MNs) are micron-scale polymeric or metallic structures that offer distinct advantages for vaccines by efficiently targeting skin-resident immune cells, eliminating injection-associated pain, and improving patient compliance. These advantages, along with recent studies showing therapeutic benefits achieved using traditional intradermal injections in human cancer patients, suggest MN delivery might enhance cancer vaccines and immunotherapies. We recently developed a new class of polyelectrolyte multilayers based on the self-assembly of model peptide antigens and molecular toll-like receptor agonists (TLRa) into ultrathin, conformal coatings. Here, we reasoned that these immune polyelectrolyte multilayers (iPEMs) might be a useful platform for assembling cancer vaccine components on MN arrays for intradermal delivery from these substrates. Using conserved human melanoma antigens and a potent TLRa vaccine adjuvant, CpG, we show that iPEMs can be assembled on MNs in an automated fashion. These films, prepared with up to 128 layers, are approximately 200 nm thick but provide cancer vaccine cargo loading >225 μg/cm2. In cell culture, iPEM cargo released from MNs is internalized by primary dendritic cells, promotes activation of these cells, and expands T cells during coculture. In mice, application of iPEM-coated MNs results in the codelivery of tumor antigen and CpG through the skin, expanding tumor-specific T cells during initial MN applications and resulting in larger memory recall responses during a subsequent booster MN application. This study support MNs coated with PEMs built from tumor vaccine components as a well-defined, modular system for generating tumor-specific immune responses, enabling new approaches that can be explored in combination with checkpoint blockade or other combination cancer therapies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Releasable layer-by-layer assembly of stabilized lipid nanocapsules on microneedles for enhanced transcutaneous vaccine delivery.

Here we introduce a new approach for transcutaneous drug delivery, using microneedles coated with stabilized lipid nanocapsules, for delivery of a model vaccine formulation. Poly(lactide-co-glycolide) microneedle arrays were coated with multilayer films via layer-by-layer assembly of a biodegradable cationic poly(β-amino ester) (PBAE) and negatively charged interbilayer-cross-linked multilamell...

متن کامل

Skin Dendritic Cell Targeting via Microneedle Arrays Laden with Antigen-Encapsulated Poly-d,l-lactide-co-Glycolide Nanoparticles Induces Efficient Antitumor and Antiviral Immune Responses

The efficacious delivery of antigens to antigen-presenting cells (APCs), in particular, to dendritic cells (DCs), and their subsequent activation remains a significant challenge in the development of effective vaccines. This study highlights the potential of dissolving microneedle (MN) arrays laden with nanoencapsulated antigen to increase vaccine immunogenicity by targeting antigen specificall...

متن کامل

Polymer multilayer tattooing for enhanced DNA vaccination.

DNA vaccines have many potential benefits but have failed to generate robust immune responses in humans. Recently, methods such as in vivo electroporation have demonstrated improved performance, but an optimal strategy for safe, reproducible, and pain-free DNA vaccination remains elusive. Here we report an approach for rapid implantation of vaccine-loaded polymer films carrying DNA, immune-stim...

متن کامل

Layer-by-Layer Assembly of Inactivated Poliovirus and N-Trimethyl Chitosan on pH-Sensitive Microneedles for Dermal Vaccination.

The aim of this work was to coat pH-sensitive microneedle arrays with inactivated polio vaccine (IPV) particles and N-trimethyl chitosan chloride (TMC) via electrostatic interactions, and assess the immunogenicity of the vaccine after topical application of the coated microneedles in rats. The surface of 200 μm long microneedles was first chemically modified with pH-sensitive (pyridine) groups ...

متن کامل

Transdermal Influenza Immunization with Vaccine-Coated Microneedle Arrays

BACKGROUND Influenza is a contagious disease caused by a pathogenic virus, with outbreaks all over the world and thousands of hospitalizations and deaths every year. Due to virus antigenic drift and short-lived immune responses, annual vaccination is required. However, vaccine coverage is incomplete, and improvement in immunization is needed. The objective of this study is to investigate a nove...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2017